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a b s t r a c t

Heterogeneous perforated panels represent a wide class of structural elements with

holes where perforations and matrix are of dissimilar materials e.g. metallic member of

a perforated hybrid joint with resin-fillings. There is a variety of objectives for

introducing holes e.g. weight saving or mechanical interlock. Where there is a regular

pattern to the arrangement of holes the perforated element can be assimilated to a

lattice. In the present study, numerical analysis has been conducted on investigating the

shock frequency filtering phenomenon encountered in two-dimensional (2D) lattice

structures. A super-element of the primitive cell (unit cell) of the lattice has been

formulated and applied in conjunction with the Floquet–Bloch’s principle to study the

shock response characteristics. Plane wave propagation is investigated by constructing

the first Brillouin zone of the primitive cell in associated Fourier space (k-space).

The frequency characteristics are presented in the band structure diagram. The study

emphasizes the existence of frequency pass and stop bands and the extent of this

phenomenon. The frequency filtering effects of the heterogeneous perforated 2D lattice

has shown its potential value to improve the structural performance of perforated

hybrid joints subjected to dynamic loads.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A lattice has been defined in mathematical abstraction as a regular periodic arrangement of points in space [1]. This
arrangement is also referred to as lattice points which along with the basis vectors form the reticulated periodic/lattice
structure. Ideal periodic structures are specified as structures constructed by regular repetition in space of identical
primitive/unit cell along predefined directions [2,3].

Many researches have carried out studies of wave propagation in such structures. Brillouin conducted a comprehensive
review of the early works on wave propagation in periodic structures as early as 1953 with the history of the subject being
traced back to early 1680s, which included contributions by Newton, Taylor, Bernoulli, Clairaut, Euler, Lagrange, and Baden-
Powell. However, till the end of the 18th century, the main analytical model of systems considered comprised lumped
masses joined by massless springs [4]. This model was sufficient to enable a study of the idea of free wave propagation in
such structures to be conducted. Rayleigh solved the governing wave equation for a stretched string with a periodic and
continuous variation of density along its length using Hill’s method [5]. The lattice structure was initially investigated with
atomic models of crystals in the field of solid state physics in the early 20th century following the discovery of X-ray
diffraction and the publication of simple and reasonably successful prediction of crystalline properties [6]. From the early
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research on crystal diffraction, it was found that although the reflection from each plane of the lattice points is assumed to
be specular, only for certain values of the angle of entering beam light y will the reflections from all parallel planes add up
in phase to give a strong diffracted beam [7]. This is the well-known Bragg’s law: 2d sin y ¼ nl, which is a consequence
of the periodicity of the space lattice. Based on this, Floquet–Bloch’s principle [8] and band theory of solids were derived
[9]. First Brillouin zone was also introduced, which is the smallest volume entirely enclosed by planes that are the
perpendicular bisectors of the reciprocal lattice vectors drawn from the origin. Any vector k from the origin to the boundary
of the Brillouin zone will satisfy the Bragg equation (i.e. the diffraction condition). The methodology of using
Floquet–Bloch’s principle and band theory to analyse the frequency character of a lattice structure has been applied for
studying both electromagnetic waves in a crystal [10,11] and light or sound waves in a periodic structure [12–14]. There has
been a growing interest in wave propagation through man-made structures. Researchers are showing the band structure
can be designed in an artificial fashion to suit different design requirement [15]. Applications are mainly developed in the
fields of electricity, optics and quantum physics. For instance, particular photonic band structure can now be designed in
photonic-bandgap materials (PBG), which means a transparent material can become opaque for any light wave vector [16].
One of the advantages of PBG materials is that the underlying theory can also be applied to other types of waves like
electromagnetic or sound waves. The theory has been widely extended and employed in various branches of science: in
electronics to design an insulator or a conductor [17,18]. Analogously, in acoustics, noise control devices have been
developed [19,20] and designable acoustic band gaps for two-dimensional (2D sonic crystals were presented by Lai [21].
These works have led to a renewed interest in elastic wave propagation in lattice structures in structural and mechanical
field [22].

Recently, literature shows that the frequency filtering phenomena for lattice structures can be exploited in structural
and mechanical design. Researchers have proved the advantages of applying a lattice structure in sandwich beams, panels
[23–26] and in truss structures [27]. From these studies it can be seen, in general, that wave propagation in periodic lattices
is fundamentally different from that occurring in a homogeneous medium.

The concept of applying perforations to the metal part of hybrid joints was first addressed by Unden [28]. The original
purpose of the introduction of perforations is to increase the cohesion between plain metal plates and adjacent layers of
fibre-reinforced plastic matrix, hence to improve the transfer of load into fibre-reinforced plastic part. Apart from the
benefit of mechanical interlocking, the perforated steel plate is also believed to decrease the elastic mismatch between the
stiff steel and the relatively compliant fibre reinforced composite. This design was further investigated and improved by
Grenestedt et al. [29,30]. Their research suggested that under static tensile load circumstances, shape of the perforation did
not affect the strength of the hybrid joint. Their experimental data revealed that the joint with perforations had highest
strength when it comprised 7–9 rows of holes. This nominally optimally perforated strips yielded 25–30% higher than their
non-perforated counterparts. However, most of the recent works are focused on perforated joints under static loads.
The perforated joint was primarily used to improve the mechanical interlock, and reduce the stress concentration owing to
stiffness mismatch.

In this paper, the dynamic shock response of a heterogeneous perforated 2D lattice is investigated with high interest in
the frequency filtering effects. Although this study is carried out for a generic condition, if we consider the heterogeneous
perforated 2D lattice as the representative of a typical metal-composite hybrid joint shown in Fig. 1 with perforations on
the metal part, and the holes are filled in with resin material, then, the perforation does not only benefit the joint by
tackling the elastic mismatch and sudden load transfer issues, but also brings the anticipated advantage of frequency
filtering features to the joint. Hence, it can potentially improve the overall performance of the joint under dynamic loads.
The main methodologies applied in this research are explained as following.

By applying the isoparametric finite element formulation [31], a super-element is formulated for the primitive
cell instead of using the global assumed modes method to solve the governing differential equations i.e. Navier or
Beltrami–Michell equations, since it is extremely difficult if not impossible to choose a set of global shape functions, ci for a
structure with complex geometry [32]. The formulation is explained in Section 2 of the present work.

A plane wave solution is admitted for the conducted frequency analyses. Thus, the generalised coordinate of a lattice
point of a harmonically vibrating infinite system is equal to e�k multiplied by that of its neighbour with the plus/minus
sign being contingent upon the direction of the wave motion. k is a complex vector in general the components of which
have real and an imaginary parts, say kj ¼ dj þ i�j, where the real part dj is the attenuation constant and the imaginary part
Composite

Resin in the holes

Metal 

Fig. 1. Typical perforated hybrid joint.
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ej is the phase constant. For waves propagating without attenuation, the real part is zero. Floquet–Bloch’s principle is
applied in the present study.

It states that the eigenfunctions of the wave equation for a periodic potential are of the form of the product of a plane
wave eik�r and a function ukðrÞwith the periodicity of the lattice: ckðrÞ ¼ ukðrÞ e

ik�r, where r denotes the lattice points in a
unit cell. The subscript k indicates that the function ukðrÞ depends on the wave vector k, and ukðrÞ denote the displacement
of a lattice point in the reference unit cell, which has the period of the lattice with ukðrÞ ¼ ukðrþ TLÞ, here TL is a translation
vector of the lattice. Therefore, in our case, the global shock response of the infinitely periodic 2D lattice under plane wave
propagation can be studied by analysing the smallest repetitive unit, i.e. the primitive cell. Sigmund et al. [33] and Fleck
et al. [34] have applied similar methods to study the plane wave propagation in 2D lattices. The former study uses a
systematic approach based on topology optimisation procedures to study a square arrangement of inclusions, and by
varying the proportion of inclusion to the matrix; they found that the maximum width of band gap appears for the high
contrast case. The latter explored wave propagation phenomena in three regular honey combs, and concluded that the
slenderness ratio of the constituent beams of the lattice has a significant influence on the band structure. This analytical
method is used in this paper to obtain the frequency characters of the heterogeneous perforated 2D lattice.

Based on the foregoing discussion, the objectives of the current paper are: to define and formulate a super-element of
the primitive cell by programming a displacement based FE code in MATLAB, to apply the static condensation technique in
order to decrease the size of the stiffness and mass matrices and finally, in conjunction with the super-element
formulation, to perform a frequency analysis of the primitive cell using Floquet–Bloch’s principle. The position of the unit
cell is immaterial as long as an infinite lattice is concerned and shock attenuation is negligible. Wave propagation
frequencies are calculated from the deduced complex eigenvalue problem and wave dispersion surfaces are obtained in
wave vector space (k-space). From the deduced band structure diagrams, the shock response of a sample heterogeneous
perforated 2D lattice is explored.

This work is organised into five sections: After the introduction, the finite element formulation is explained in
Section 2. This is followed by the super-element formulation of the primitive cell by MATLAB programming as elucidated
in Section 3. By using the super-element formulation, the frequency analysis was conducted and the results are presented
in Section 4. Finally, the results are concluded and a brief discussion is followed.
2. Finite element formulation

2.1. Primitive cell

A primitive cell was selected to investigate the structural behaviour of the perforated panel shown in Fig. 2a.
Considering all axes of symmetry, the primitive cell is divided into four quarters, as shown in Fig. 2b. The geometric
configuration of the primitive cell is governed by parameters a, b, and c as defined by Fig. 2b. Since the lattic studied here is
in 2D space (say in x–y plane), the thickness of the perforated panel t is set to unity. The material input properties of the
steel panel and resin inclusions are tabulated in Table 1.
2.2. Lagrangian FE formulation

As shown in Fig. 2b, each quarter of the primitive cell is discretized into four Lagrangian elements labelled I–IV. The
shape function orders of the elements in the lattice panel can then be controlled by using input parameters N, M and P as
Resin 
Steel 

c

Primitive  
Cell 

I

III II 

a 

b

c 

Fig. 2. (a) A perforated panel with square hold lattices, (b) a primitive cell with parametric geometric input: a, b, c (coaob).
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Table 1
2D Panel material properties.

Steel: Young’s modulus Es ¼ 195 Resin: Young’s modulus Er ¼ 3

Poisson’s ratio us ¼ 0.3 Poisson’s ratio nr ¼ 0.25

Mass density �rs ¼ 8:06E� 6 Mass density �rr ¼ 1:7E� 6

Units: mm, ms, kg, kN, GPa.

I P

(1,-1)(-1,-1)

N

r

(-1,1) (1,1)

Fig. 3. Lagrangian element. Here using 3�3 Lagrangian element as an example (i.e. N ¼ 3, P ¼ 3).

P nodes 

P nodes 
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h1 h2 h3 h4 h5 

h9h6 h7 h8 h10
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h24
M nodes 

 h12 h13 h15 

Fig. 4. Quarter of the primitive cell assembled by four 3�3 Lagrangian elements.
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numbers of nodes on each edge of the Lagrangian element. As an example, a 3�3 Lagrangian element I is shown in Fig. 3
with N ¼ 3 and P ¼ 3. Parameters r and s specify the natural coordinates and vary between �1 and 1 (Fig. 4).

As we are considering the shock response in a 2D lattice, the Lagrangian element is assumed to have two degrees of
freedom at each point U ¼ (U,V) corresponding to coordinates in the (x, y) plane. The displacement field within the element
u for a typical Lagrangian element (Fig. 3) is thus related to the nodal displacement vector U as follows:

uðLIÞðx; yÞ ¼ HðLIÞðx; yÞU (1)

where H(LI) is the displacement interpolation matrix, the superscript (LI) denotes Lagrangian element I. Here, we applied
MATLAB scripts 1 and 2 (shown in Appendix B) to deduce the shape functions of the Lagrangian element I in symbolic form.
An example shape function matrix HIT of a 3�3 Lagrangian element is shown in Appendix A. The Jacobian operator can be
derived from Eq. (2). The Jacobian operator derived for a 3�3 Lagrangian element was recorded in Appendix B as an
instance.

J ¼

qU

qr

qV

qr
qU

qs

qV

qs

2
664

3
775 (2)

By using Gauss integration, element mass and stiffness matrices, Me and Ke are calculated in Eqs. (3) and (4), respectively.
The related MATLAB script 4 is given in Appendix C.

Me ¼

Z
v
rHTH dV ¼ rt �

Z 1

�1

Z 1

�1
C dr ds (3)

where C ¼ HT �H � det J.
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The mass matrix of Part I of the primitive cell, MeI, which derived for a 3�3 Lagrangian element, is given in Appendix D.
It indicates there is a linear relationship between the mass matrix and geometric inputs a and c. Similarly, it can be shown
that the mass matrix for Part II is also linearly dependent upon a and b.

The stress–strain constitutive matrix, C (shown in Eq. (5)) corresponding to plane stress condition is used in the present
study:

Ke ¼

Z
v

BTCB dV ¼ t �

Z 1

�1

Z 1

�1
K dr ds (4)

C ¼
E

1� v2

1 v 0

v 1 0

0 0
1� v

2

2
664

3
775 (5)

L ¼ BTCB � det J (6)

where B is the strain–displacement matrix. E is the Young’s Modulus; u is the Poisson’s ratio. The stiffness matrix of Part I of
the primitive cell, Ke derived from a 3�3 Lagrangian element is given in Appendix D. It indicates that there is a functional
dependence of kij on z (z ¼ c/a).

2.3. Assembly

By applying the standard direct stiffness method, both mass and stiffness matrices (Me and Ke) of the four Lagrangian
elements, I, II, III and IV, can be assembled into the system displacement coordinates. Hence, it forms a quarter of the
primitive cell with mass matrix MTL and stiffness matrix KTL, which renders the primitive cell element formulation
possible.

3. Super-element formulation

3.1. Transformation matrices

After assembling, both mass and stiffness of the top left (TL) quarter of the primitive cell is derived (shown in Fig. 2b). By
using the symmetric character of the primitive cell, transformation matrices A given in Eq. (7) can be applied in Eq. (8) to
form the mass and stiffness matrices of the other three quarters of the primitive cell. Here we take ATR as an example, the
non-zero entries of the matrix is formed by repeating a blog of 2�2 entries [�1, 0; 0, 1] along the diagonal. The repeating
time is equal to half of the degree of freedom (dof) of each quarter of the unit cell. So the size of the transformation matrices
is always equal to the size of the mass or stiffness matrix, which is governed by the input parameters of the Lagrangian
elements: N, M and P.

(7)

where the subscripts (TR), (BL), and (BR) denote the top right, bottom left, and bottom right quarter of the primitive cell,
respectively.

K̂ ¼ RenumberhÂKTLÂ
T
i M̂ ¼ RenumberhÂMTLÂ

T
i (8)

Here the head is applied to denote the corresponding subscripts. For instance, KTR ¼ RenumberhATRKTLAT
TRi. As the

transformation matrices mirror the mass and stiffness matrices, entries in each matrix are in the reverse order, which
needs to be renumbered.

3.2. Modal parametric mass and stiffness matrices

By using the same approach (i.e. the direct stiffness method), the four quarters of the primitive cell are assembled
together, hence, it forms the super-element matrix with the stiffness matrix KC, and mass matrix MC.

KC ¼
X

K̂ ¼ KTL þ KTR þ KBL þ KBR (9)

MC ¼
X

M̂ ¼MTL þMTR þMBL þMBR (10)
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To validate the accuracy, several element tests have been conducted. By comparing the displacement output from a
commercial software package (ABAQUS 6.7-1) FE model and the super-element formulation under both static and dynamic
edge loading conditions, it is seen that even by using a super-element with 50 degrees of freedom, which is composed of
sixteen 2�2 Lagrangain elements, good correlation can be obtained compared to the ABAQUS model with CPS8, 8-node
biquadratic elements. The error is less than 0.2% under static load and less than 5% error under dynamic load for
frequencies below twice the tensile mode frequency. The mass and stiffness matrices of the super-element also show there
is a direct relationship between the geometric ratios z ¼ c/a and Z ¼ c/b and KC and MC, which indicates shock response
characteristics of a heterogeneous perforated panel can be controlled by z and Z, and as we expected, some frequency
filtering could be achieved. This will be discussed in next section.

4. Frequency analysis

Based on the formulated super-element, a frequency analysis of the heterogeneous perforated 2D lattice was conducted.
According to Bloch’s theorem, the displacement at the jth point in any cell can be expressed as:

uðrÞ ¼ uðrjÞ e
k�ðr�rjÞ ¼ uðrjÞ e

ðk1�n1þk2�n2Þ (11)

where u(rj) is the displacement of a lattice point in the primitive cell; the integer pair (n1,n2) is used to identify translations
along the e1 and e2 direction, respectively; vector r is defined as: r ¼ rj+n1e1+n2e2; and k1 ¼ d1+ie1 and k2 ¼ d2+ie2

represent the components of the wave vector k along e1 and e2. i.e. k1 ¼ k � e1, and k2 ¼ k � e2. Assumption has been made
that there is no attenuation for the wave propagation studied in this paper. Hence, the variation of complex wave amplitude
across a primitive cell does not depend upon the location of the primitive cell within the structure. Thus, the shock
response of the 2D lattice can be investigated by considering wave motion within a single primitive cell shown in Fig. 5. For
computational convenience purposes, the 2D lattice panel is transformed from real space domain to the reciprocal lattice in
the k-space where solution of the problem is simpler.

The basis vectors of the two systems are related by:

ei � e
�
j ¼ 2p � dij

e1 ¼ 2ðaþ cÞ i
*
; e2 ¼ 2ðbþ cÞ j

*

e�1 ¼
2p

2ðaþ cÞ
j
*
; e�2 ¼

2p
2ðbþ cÞ

i
*

(12)

where ei denotes the basis vectors of the direct lattice and e�j denotes the basis of reciprocal lattice and dij is the Kronecker
delta function. For a 2D lattice, the subscripts i, jA{1,2}. The headed i

*
and j

*
are the unit vectors.

4.1. Static condensation

For computational efficiency, the super-element is modified by static condensation, which condensed the internal
degrees of freedom; hence the total dof of the primitive cell reduces from 50 to 32. A brief process of the static
condensation is introduced here:

Maa 0ad

0da 0dd

" #
€Ua
€Ud

( )
þ

Kaa Kad

Kda Kdd

" #
Ua

Ud

( )
¼

PaðtÞ

0d

( )
(13)
e2

e1

R

PΓ e1
*

Q

e2
*

Fig. 5. A heterogeneous perforated 2D lattice: (a) with a selected primitive cell and the first Brillouin zone and (b) in k space. The irreducible part of the

first Brillouin zone are shown as shaded area. The basis vectors of the direct lattice (ei) and the reciprocal lattice e�i are also shown. The points are defined

in Table 2.
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Table 2
The irreducible first Brillouin zone points.

G P Q R

0, 0 p
2ðaþ cÞ

;0
p

2ðaþ cÞ
;

p
2ðbþ cÞ

0;
p

2ðbþ cÞ

The wave vectors are chosen along the locus GPQR in reciprocal lattice.
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where the subscript a denotes the active degrees of freedom, in this case they are the entries on the boundary of the
primitive cell, and d corresponds to condensed ones, which are the internal ones.

Given the equation of motion in partitioned-matrix form which provides a static constraint equation:

KdaUa þ KddUd ¼ 0d (14)

Then the static condensation transformation matrix is

Tc �
Iaa

Tda

" #
¼

Iaa

�K�1
dd Kda

" #
(15)

And the condensed mass and stiffness matrices can be derived by:

Maa ¼ TT
c McTc and Kaa ¼ TT

c KcTc (16)

where Mc and Kc are the uncondensed mass and stiffness matrix of the primitive cell obtained from Eqs. (9) and (10). Maa

and Kaa, are the condensed mass and stiffness matrix of the primitive cell.
The first Brillouin zone is defined as a Wigner–Seitz or primitive unit cell of the reciprocal lattice, and it can be formed

by constructing the perpendicular bisectors of the edges of the reciprocal primitive cell. Thus, the wave vectors can be
restricted to the edges of the irreducible part of the first Brillouin zone in the reciprocal lattice presented in Fig. 5b by
the shaded region, and the lattice points of the irreducible first Brillouin zone in associated Fourier space are tabulated in
Table 2. This allows the bandgaps character of the heterogeneous perforated 2D lattice to be investigated, since the band
extrema occurs along the boundaries of the irreducible zone.

The geometric inputs a, b, and c are converted into dimensionless parameters using Buckingham’s Pi-theorem as
follows:

a ¼ C=A; b ¼ C=B; (17)

where the width of the unit cell A ¼ 2(a+c), the length of the unit cell B ¼ 2(b+c) and the width of the square resin hole
C ¼ 2c.

The following two cases have been investigated in the frequency analysis:

a ¼ 1

12
; b ¼

1

24
;

a ¼ 1

3
; b ¼

1

6
. (18)

4.2. Floquet–Bloch’s principle

In solid state physics, band-structure theory has been successfully applied to analyse the diffraction of the waves by
crystals to determine the ground-state properties such as cohesive energies or crystallographic structure [35]. In contrast,
Bloch’s theorem is used here to predict and estimate the shock response of a 2D lattice under plane wave by investigating
one primitive cell with a given configuration. By applying Bloch’s theorem, which can be rewritten as unkðrj þ TLÞ ¼

unkðrjÞ e
ik�rj where n is the band index, and TL is a translation vector of the lattice, the following relations between the

displacements can be obtained:

u5 ¼ u1ek1 ; u9 ¼ u6ek1 ; u10 ¼ u7ek1 ; u11 ¼ u8ek1 ,

u12 ¼ u1ek2 ; u13 ¼ u2ek2 ; u14 ¼ u3ek2 ; u15 ¼ u4ek2 ; u16 ¼ u1ek1þk2 (19)

where the subscripts, respectively, specify the displacements nodes of a condensed super-element, as shown in Fig. 6. The
above relationships can be defined in the matrix notation as:

u ¼ TBũ (20)
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u14 

u8

u7

u6

u1 u2 u3 u4 u5

u9

u10 

u11 

u16 

u15 

Condensed
Super-element  

u13
u12

Fig. 6. A condensed super-element (the nodes outside the red block show the Bloch reduced coordinates). (For interpretation of the references to color in

this figure legend the reader is referred to the web version of this article.)
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TB ¼

I 0 0 0 0 0 0

0 I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 I 0 0 0

Iek1 0 0 0 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 I 0

0 0 0 0 0 0 I

0 0 0 0 Iek1 0 0

0 0 0 0 0 Iek1 0

0 0 0 0 0 0 Iek1

Iek2 0 0 0 0 0 0

0 Iek2 0 0 0 0 0

0 0 Iek2 0 0 0 0

0 0 0 Iek2 0 0 0

Ieðk1þk2Þ 0 0 0 0 0 0

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

ũ ¼

u1

u2

u3

u4

u6

u8

u10

2
666666666664

3
777777777775

where ũ is the displacements of the nodes in the Bloch reduced coordinates, and I is the 2nd order identity matrix.

4.3. Analysis of free wave motion

For a free vibration, the governing differential equation of the finite element model of the primitive cell takes the form:

M €uþ Ku ¼ 0 (21)

By applying Bloch’s theorem it follows that:

D̃ũ ¼ 0; where D̃ ¼ TH
B DTB, (22)

The dynamic stiffness D is defined as: D ¼ ½K�OM�, and O ¼ o2; the superscript H denotes the Hermitian transpose.
Therefore, a linear algebraic eigenvalue problem is formulated as follows:

D̃ðk1;k2;OÞũ ¼ 0 (23)

As the assumption of no attenuation has been taken into this 2D shock wave analysis, (i.e. k1 ¼ ie1 and k2 ¼ ie2), the
associated eigenvalue problem only includes two components of the wave vector viz. the phase constants e1 and e2 along
with the frequency of the plane wave o.

As discussed earlier, due to the periodicity, the phase constants e1 and e2 can be specified to restrict the wave vector to
the edges of the irreducible part of the 1st Brillouin zone (i.e. kA[�p, p]d, where d is the dimension). Any other point k of
the zone which is not in this rectangle can be rotated into a k-vector inside the rectangle by a symmetry operation that
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leaves the zone invariant. Based on these, dispersion surfaces can be computed by solving for the frequencies. The results
are presented and discussed in the next section.

4.4. Band structure

If we take the square hole size, c ¼ 2 mm and c ¼ 0.5 mm for Cases 1 and 2, respectively, from [24] it gives:
	

Tab

The

G

0, 0
Case1: a ¼ 4 mm, b ¼ 10 mm;

	
 Case 2: a ¼ 5.5 mm, b ¼ 11.5 mm
and the corresponding irreducible first Brillouin zone points are shown in Table 3.
By solving the resulting linear algebraic eigenvalue problem in Eq. (29), eigenvalues O for each pair of wave vector

components k1 and k2 are calculated. Also, the obtained frequencies are normalised by dividing the first none zero
frequency at G.

i:e: ôi ¼ oi=oG3 (24)

The dispersion surfaces for the seven lowest frequencies are attained and plotted in Figs. 7 and 8. The parameter s is
introduced as a scalar pathlength parameter in k space, along the perimeter GPQRG of the shaded region GPQR i.e. the first
Brillouin zone. It is used to indicate the location of any point on the perimeter. The horizontal axes denote values of s, the
k-space position on the boundary of the irreducible Brillouin zone. Firstly, from both cases, as expected, it can be seen that
there is a range of frequencies with no corresponding eigenmodes, i.e. there is a completed forbidden band between the
fourth and fifth bands in both cases. This means within the forbidden band, there is no elastic wave with the frequencies of
the band that can propagate through the structure. The forbidden band zone is indicated with shaped regions in Figs. 7
and 8.

Secondly, it can also be noticed that by increasing the ratios a and b, apart from the forbidden band between the fourth
and fifth bands, there is an additional complete band-gap between sixth and seventh band shown in Fig. 8. This means that,
le 3

irreducible first Brillouin zone points for c ¼ 2, a ¼ 0.5, b ¼ 0.2; and c ¼ 0.5.

P Q R

p
12
;0

p
12
;
p

24
0;

p
24

ΓΓ P Q R

k-space
locus

R Q

PΓ
s

�
iˆ

�7ˆ

�6ˆ

�5ˆ

�4ˆ

�3ˆ
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as expected, the 2D lattice does have the frequency filtering effects. Furthermore, by varying the geometric input ratios a
and b, the band structure diagram can be designed. Thus, a desired shock response of a hybrid joint can be achieved by
choosing the suitable perforation.

Last but not least, Figs. 7 and 8 also indicate that perforations will have limited effects to lower excitation frequencies.
As it shows in Fig. 8, there is no full stop band in the lower frequencies domain. Nevertheless, the two partial band gaps,
which are indicated with hatched regions in the diagram, shows there will still be propagation at those frequencies.
However, the perforation is able to filter a range of the higher excitation frequencies, which are the ones that could
potentially cause damage to the structure e.g. in the case of a hybrid joint.
5. Conclusions

The present study deals with frequency filtering phenomenon encountered in 2D lattice structures such as hybrid
metal-composite joints. The study conducted is numerical and includes frequency eigenvalue extraction for a structure
with holes. Since the study is generic the results may be applied to many disciplines, nonetheless, the emphasis here has
been on the propagation of mechanical waves in 2D lattices of heterogeneous nature.

In this work a super-element has been formulated based on the finite element (FE) method by assembling four
similar parts i.e. four quarters of a unit cell. As an example, one super-element with 50 dof has been adopted and
studied. The degrees of freedom are reduced through static condensation. Subsequently, Floquet–Bloch’s principle
has been utilised to study wave filtering phenomenon in the representative building block (primitive cell) of the 2D lattice.
In order to explore the shock response of a heterogeneous perforated 2D lattice, a frequency eigenvalue extraction
analysis for the primitive cell has been conducted for the first Brillouin zone. The wave motion complex eigenvalue
problem has been solved for given geometric input ratios, and the corresponding band structure diagrams are
obtained.

The results show that frequency bands can be governed not only by the proportion of inclusion (resin filling) to the
matrix (metallic part), but also by the structural geometric input ratios (i.e. by a and b). Existing literature shows that band
gaps can be maximised by using higher contrast of inclusion to the matrix, however, a widened band may still not cover the
frequency range which is desired to be filtered by the 2D lattice. Therefore, apart from using high contrast material in a
heterogeneous perforated 2D lattice panel, one can optimise the perforated lattice panel to achieve desired band gap
characteristics by varying the geometric input ratios a and b. Hence, elastic waves can be prevented from propagating or
admitted to propagate in the specified frequency regimes by changing these parameters.
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The results from the band structure diagrams in this study show that perforations may have limited effect on lower
excitation frequencies, nevertheless, clearly complete forbidden bands are observed for a range of higher excitation
frequencies. These higher frequencies are the ones which might cause dramatic and sudden failure to the hybrid joint in a
high rate loading event such as a blast or impact scenario. This means, as expected, by applying perforations to the metal
part of the hybrid joint, a beneficial filtering effect can be obtained if the response were to remain in the elastic range and
linearity were to be preserved. The advantages of perforated lattice frequency filtering could be utilised to protect the joints
subjected to impulsive or pulse loads, thus, to improve their shock response behaviour. However when nonlinearities are
involved this would be an extremely intricate problem which merits to be addressed in a separate study.
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Appendix A. Derived shape function matrix for a 3�3 Lagrangian element

HIT ¼

1=4 � r � ðr � 1Þ � s � ðs� 1Þ 0

0 1=4 � r � ðr � 1Þ � s � ðs� 1Þ

�1=2 � ðr þ 1Þ � ðr � 1Þ � s � ðs� 1Þ 0

0 �1=2 � ðr þ 1Þ � ðr � 1Þ � s � ðs� 1Þ

1=2 � ð1=2 � r þ 1=2Þ � r � s � ðs� 1Þ 0

0 1=2 � ð1=2 � r þ 1=2Þ � r � s � ðs� 1Þ

�1=2 � r � ðr � 1Þ � ðsþ 1Þ � ðs� 1Þ 0

0 �1=2 � r � ðr � 1Þ � ðsþ 1Þ � ðs� 1Þ

ðr þ 1Þ � ðr � 1Þ � ðsþ 1Þ � ðs� 1Þ 0

0 ðr þ 1Þ � ðr � 1Þ � ðsþ 1Þ � ðs� 1Þ

�ð1=2 � r þ 1=2Þ � r � ðsþ 1Þ � ðs� 1Þ 0

0 �ð1=2 � r þ 1=2Þ � r � ðsþ 1Þ � ðs� 1Þ

1=2 � r � ðr � 1Þ � ð1=2 � sþ 1=2Þ � s 0

0 1=2 � r � ðr � 1Þ � ð1=2 � sþ 1=2Þ � s

�ðr þ 1Þ � ðr � 1Þ � ð1=2 � sþ 1=2Þ � s 0

0 �ðr þ 1Þ � ðr � 1Þ � ð1=2 � sþ 1=2Þ � s

ð1=2 � r þ 1=2Þ � r � ð1=2 � sþ 1=2Þ � s 0

0 ð1=2 � r þ 1=2Þ � r � ð1=2 � sþ 1=2Þ � s

2
6666666666666666666666666666666666666664

3
7777777777777777777777777777777777777775

Appendix B. Derived Jacobian matrix for a 3�3 Lagrangian element

JI ¼ ½�1=2 � ðr � 1Þ � ð1=2 � sþ 1=2Þ � s � a� 1=2 � ðr þ 1Þ � ð1=2 � sþ 1=2Þ � s � aþ 1=2 � ðr � 1Þ � ðsþ 1Þ � ðs� 1Þ � a

þ 1=2 � ðr þ 1Þ � ðsþ 1Þ � ðs� 1Þ � a� 1=4 � ðr � 1Þ � s � ðs� 1Þ � a� 1=4 � ðr þ 1Þ � s � ðs� 1Þ � a

þ 1=2 � r � ð1=2 � sþ 1=2Þ � s � aþ ð1=2 � r þ 1=2Þ � ð1=2 � sþ 1=2Þ � s � a� 1=2 � r � ðsþ 1Þ � ðs� 1Þ � a

� ð1=2 � r þ 1=2Þ � ðsþ 1Þ � ðs� 1Þ � aþ 1=4 � r � s � ðs� 1Þ � aþ 1=2 � ð1=2 � r þ 1=2Þ � s � ðs� 1Þ � a,

� 1=2 � ðr � 1Þ � ð1=2 � sþ 1=2Þ � s � c þ r � ð1=2 � sþ 1=2Þ � s � c þ 1=4 � ðr � 1Þ � ðsþ 1Þ � ðs� 1Þ � c

� 1=2 � r � ðsþ 1Þ � ðs� 1Þ � c � ðr þ 1Þ � ð1=2 � sþ 1=2Þ � s � c þ 1=2 � ðr þ 1Þ � ðsþ 1Þ � ðs� 1Þ � c

þ ð1=2 � r þ 1=2Þ � ð1=2 � sþ 1=2Þ � s � c � 1=2 � ð1=2 � r þ 1=2Þ � ðsþ 1Þ � ðs� 1Þ � c�

½�1=2 � ðr þ 1Þ � ðr � 1Þ � s � a� 1=2 � ðr þ 1Þ � ðr � 1Þ � ð1=2 � sþ 1=2Þ � aþ 1=4 � ðr þ 1Þ � ðr � 1Þ � ðs� 1Þ � a

þ 1=2 � ðr þ 1Þ � ðr � 1Þ � ðsþ 1Þ � aþ ð1=2 � r þ 1=2Þ � r � s � aþ ð1=2 � r þ 1=2Þ � r � ð1=2 � sþ 1=2Þ � a

� 1=2 � ð1=2 � r þ 1=2Þ � r � ðs� 1Þ � a� ð1=2 � r þ 1=2Þ � r � ðsþ 1Þ � a;1=4 � r � ðr � 1Þ � s � c

þ 1=2 � r � ðr � 1Þ � ð1=2 � sþ 1=2Þ � c � 1=4 � r � ðr � 1Þ � ðs� 1Þ � c � 1=4 � r � ðr � 1Þ � ðsþ 1Þ � c

� 1=2 � ðr þ 1Þ � ðr � 1Þ � s � c � ðr þ 1Þ � ðr � 1Þ � ð1=2 � sþ 1=2Þ � c þ 1=2 � ðr þ 1Þ � ðr � 1Þ � ðs� 1Þ � c

þ 1=2 � ðr þ 1Þ � ðr � 1Þ � ðsþ 1Þ � c þ 1=2 � ð1=2 � r þ 1=2Þ � r � s � c þ ð1=2 � r þ 1=2Þ � r � ð1=2 � sþ 1=2Þ � c

� 1=2 � ð1=2 � r þ 1=2Þ � r � ðs� 1Þ � c � 1=2 � ð1=2 � r þ 1=2Þ � r � ðsþ 1Þ � c�
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Appendix C. Matlab 7.5 scripts

Matlab 7.5 script 1

function [sf] ¼ Phix(j,X,N,r)

sf ¼ 1;

for n ¼ 1:N

if (n
 ¼ j)

sf ¼ sf *(r�X(n))/(X(j)�X(n));end

end

End

Matlab 7.5 script 2

for i ¼ 1:P

for j ¼ 1:N

HIa(i,j) ¼ Phix(j,X,N,r) *Phiy(i,PY,P,s);

end

End

HIa

Matlab 7.5 script 3

[risi_N,weight_N] ¼ GS(GSN,GSra,GSrb);

[risi_P,weight_P] ¼ GS(GSP,GSra,GSrb);

Fmass_a ¼ HIT *HI *dJI;

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Fmass_b ¼ zeros(P *N *2,P *N *2);

for risi_Ni ¼ 1:GSN

for risi_Pi ¼ 1:GSP

r ¼ risi_N(risi_Ni,1);

s ¼ risi_P(risi_Pi,1);

Fmass_b ¼ Fmass_b+weight_N(risi_Ni,1)

*weight_P(risi_Pi,1).*subs(Fmass_a);

syms r s

end

end

MassI ¼ simplify(rus *t *Fmass_b);

Matlab 7.5 script 4

function [risi,weight] ¼ GS(GSn,GSra,GSrb)

GSn ¼ GSn�1;

GSn1 ¼ GSn+1; GSn2 ¼ GSn+2;

xu ¼ linspace(�1,1,GSn1)0;

% Initial guess

y ¼ cos((2 *(0:GSn)
0+1) *pi/(2 *GSn+2))+(0.27/GSn1) *sin(pi *xu *GSn/GSn2);

% Legendre–Gauss Vandermonde Matrix

L ¼ zeros(GSn1,GSn2);

% Derivative of LGVM

Lp ¼ zeros(GSn1,GSn2);

% Compute the zeros of the GSn+1 Legendre Polynomial

% using the recursion relation and the Newton–Raphson method

y0 ¼ 2;

% Iterate until new points are uniformly within epsilon of old points

while max(abs(y�y0))4eps

L(:,1) ¼ 1;

Lp(:,1) ¼ 0;

L(:,2) ¼ y;

Lp(:,2) ¼ 1;

for k ¼ 2:GSn1

L(:,k+1) ¼ ( (2 *k�1) *y. *L(:,k)�(k�1) *L(:,k�1) )/k; end

Lp ¼ (GSn2)*( L(:,GSn1)�y.*L(:,GSn2) )./(1�y.^2);

y0 ¼ y;

y ¼ y0�L(:,GSn2)./Lp; end

risi ¼ (GSra *(1�y)+GSrb *(1+y))/2; % Linear map from[�1,1] to [GSra,GSrb]

weight ¼ (GSrb�GSra)./((1�y.^2).*Lp.^2) *(GSn2/GSn1)^2; %Compute weights
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Appendix D

Derived mass matrix for a 3�3 Lagrangian element:

MI3�3 ¼ 1:0e�7

1:43 0 0:72 0 �0:36 0 0:72 0 0:36 0 �0:18 0 �0:36 0 �0:18 0 0:09 0

. . . 1:43 0 0:72 0 �0:36 0 0:72 0 0:36 0 �0:18 0 �0:36 0 �0:18 0 0:09

. . . . . . 5:73 0 0:72 0 0:36 0 2:87 0 0:36 0 �0:18 0 �1:43 0 �0:18 0

. . . . . . . . . 5:73 0 0:72 0 0:36 0 2:87 0 0:36 0 �0:18 0 �1:43 0 �0:18

. . . . . . . . . . . . 1:43 0 �1:18 0 0:36 0 0:72 0 0:09 0 �0:18 0 �0:36 0

. . . . . . . . . . . . . . . 1:43 0 �0:18 0 0:36 0 0:72 0 0:09 0 �0:18 0 �0:36

. . . . . . . . . . . . . . . . . . 5:73 0 287 0 �1:43 0 0:72 0 0:36 0 �0:18 0

. . . . . . . . . . . . . . . . . . . . . 5:73 0 287 0 �1:43 0 0:72 0 0:36 0 �0:18

. . . . . . . . . . . . . . . . . . . . . . . . 22:93 0 2:87 0 0:36 0 2:87 0 0:36 0

Symmetric

. . . . . . . . . . . . . . . . . . . . . . . . . . . 22:93 0 2:87 0 0:36 0 2:87 0 0:36

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:73 0 �0:18 0 0:36 0 0:72 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:73 0 �0:18 0 0:36 0 0:72

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:43 0 0:72 0 �0:36 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:43 0 0:72 0 �0:36

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:73 0 0:72 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:73 0 0:72

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:43 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:43

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775
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Derived Stiffness Matrix for a 3�3 Lagrangian Element:

keI3�3 ¼

k1;1 k1;2 k1;3 k1;4 k1;5 k1;6 k1;7 k1;8 k1;9 k1;10 k1;11 k1;12 k1;13 k1;14 k1;15 k1;16 k1;17 k1;18

. . . k2;2 k2;3 k2;4 k2;5 k2;6 k2;7 k2;8 k2;9 k2;10 k2;11 k2;12 k2;13 k2;14 k2;15 k2;16 k2;17 k2;18

. . . . . . k3;3 0 k3;5 k3;6 k3;7 k3;8 k3;9 0 k3;11 k3;12 k3;13 k3;14 k3;15 0 k3;17 k3;18

. . . . . . . . . k4;4 k4;5 k4;6 k4;7 k4;8 0 k4;10 k4;11 k4;12 k4;13 k4;14 0 k4;16 k4;17 k4;18

. . . . . . . . . . . . k5;5 k5;6 k5;7 k5;8 k5;9 k5;10 k5;11 k5;12 k5;13 k5;14 k5;15 k5;16 k5;17 k5;18

. . . . . . . . . . . . . . . k6;6 k6;7 k6;8 k6;9 k6;10 k6;11 k6;12 k6;13 k6;14 k6;15 k6;16 k6;17 k6;18

. . . . . . . . . . . . . . . . . . k7;7 0 k7;9 0 k7;11 0 k7;13 k7;14 k7;15 k7;16 k7;17 k7;18

. . . . . . . . . . . . . . . . . . . . . k8;8 0 k8;10 0 k8;12 k8;13 k8;14 k8;15 k8;16 k8;17 k8;18

. . . . . . . . . . . . . . . . . . . . . . . . k9;9 0 k9;11 0 k9;13 k9;14 k9;15 0 k9;17 k9;18

. . . . . . . . . . . . . . . . . . . . . . . . . . . k10;10 0 k10;12 k10;13 k10;14 0 k10;16 k10;17 k10;18

Symmetric

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k11;11 0 k11;13 k11;14 k11;15 k11;16 k11;17 k11;18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k12;12 k12;13 k12;14 k12;15 k12;16 k12;17 k12;18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k13;13 k13;14 k13;15 k13;16 k13;17 k13;18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k14;14 k14;15 k14;16 k14;17 k14;18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k15;15 0 k15;17 k15;18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k16;16 k16;17 k16;18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k17;17 k17;18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k18;18

2
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k1;6 ¼ k2;13 ¼ k5;18 ¼ k14;17 ¼ 0:89; k1;14 ¼ k2;5 ¼ k6;17 ¼ k13;18 ¼ �0:89;

k1;2 ¼ k17;18 ¼ 34:82; k5;6 ¼ k13;14 ¼ �34:82;

k1;8 ¼ k2;3 ¼ k4;5 ¼ k6;11 ¼ k7;14 ¼ k12;17 ¼ k13;16 ¼ k15;18 ¼ 3:57;

k1;4 ¼ k2;7 ¼ k3;6 ¼ k5;12 ¼ k8;13 ¼ k11;18 ¼ k14;15 ¼ k16;17 ¼ �3:57;

k1;12 ¼ k1;16 ¼ k2;11 ¼ k2;15 ¼ k3;18 ¼ k4;17 ¼ k7;18 ¼ k8;17 ¼ 15:5;

k3;14 ¼ k4;13 ¼ k5;8 ¼ k5;16 ¼ k6;7 ¼ k6;15 ¼ k11;14 ¼ k12;13 ¼ �15:5;

k3;8 ¼ k4;7 ¼ k5;10 ¼ k6;9 ¼ k9;14 ¼ k10;13 ¼ k11;16 ¼ k12;15 ¼ 61:9;

k1;10 ¼ k2;9 ¼ k3;12 ¼ k4;11 ¼ k7;16 ¼ k8;15 ¼ k9;18 ¼ k10;17 ¼ �61:9;

k1;18 ¼ k2;17 ¼ �3:87; k5;14 ¼ k6;13 ¼ 3:87;

k1;5 ¼ k13;17 ¼ 9:25 � z� 5:83=z; k2;14 ¼ k6;18 ¼ �5:83 � zþ 9:52=z;

k1;1 ¼ k5;5 ¼ k13;13 ¼ k17;17 ¼ 66:67 � zþ 23:33=z; k2;2 ¼ k6;6 ¼ k14;14 ¼ k18;18 ¼ 23:33 � zþ 66:67=z;

k1;3 ¼ k3;5 ¼ k13;15 ¼ k15;17 ¼ �76:19 � zþ 11:67=z; k2;8 ¼ k6;12 ¼ k8;14 ¼ k12;18 ¼ 11:67 � z� 76:19=z;

k1;7 ¼ k5;11 ¼ k7;13 ¼ k11;17 ¼ 33:33 � z� 26:67=z; k2;4 ¼ k4;6 ¼ k14;16 ¼ k16;18 ¼ �26:67 � zþ 33:33=z;

k1;9 ¼ k3;7 ¼ k3;11 ¼ k5;9 ¼ k7;15 ¼ k9;13 ¼ k9;17 ¼ k11;15 ¼ �38:1 � z� 13:3=z;

k3;15 ¼ �38:1 � Aþ 13:33=z; k7;11 ¼ 38:1 � z� 13:33=z;

k2;10 ¼ k4;8 ¼ k4;12 ¼ k6;10 ¼ k8;16 ¼ k10;14 ¼ k10;18 ¼ k12;16 ¼ �13:33 � z� 38:1=z;

k8;12 ¼ 13:3 � A� 38:1=z; k4;16 ¼ �13:3 � zþ 38:1=z;

k1;11 ¼ k2;16 ¼ k5;7 ¼ k7;17 ¼ k11;13 ¼ 4:76 � zþ 6:67=z;

k2;16 ¼ k4;14 ¼ k4;18 ¼ k6;16 ¼ 6:67 � zþ 4:76=z;

k1;13 ¼ k5;17 ¼ �16:67 � zþ 3:33=z; k2;6 ¼ k14;18 ¼ 3:33 � z� 16:67=z;

k1;15 ¼ k3;13 ¼ k3;17 ¼ k5;15 ¼ 19:05 � zþ 1:67=z; k2;12 ¼ k6;8 ¼ k8;18 ¼ k12;14 ¼ 1:67 � zþ 19:05=z;

k1;17 ¼ k5;13 ¼ �2:38 � z� 0:83=z; k2;18 ¼ k6;14 ¼ �0:83 � z� 2:38=z;



ARTICLE IN PRESS

Y. Yang et al. / Journal of Sound and Vibration 327 (2009) 26–4040
k3;3 ¼ k15;15 ¼ 152:38 � zþ 93:33=z; k8;8 ¼ k12;12 ¼ 93:33 � zþ 152:38=z;

k4;4 ¼ k16;16 ¼ 53:33 � zþ 266:67=z; k7;7 ¼ k11;11 ¼ 266:67 � zþ 53:33=z;

k3;9 ¼ k9;15 ¼ 76:19 � z� 106:67=z; k8;10 ¼ k10;12 ¼ �106:67 � zþ 76:19=z;

k4;10 ¼ k10;16 ¼ 26:67 � z� 304:76=z; k7;9 ¼ k9;11 ¼ �304:76 � zþ 26:67=z;

k9;9 ¼ 609:52 � zþ 213:33=z; k10;10 ¼ 213:33 � zþ 609:52=z;

where z ¼ c/a.
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